首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   22篇
  国内免费   5篇
综合类   1篇
数学   131篇
物理学   3篇
  2022年   1篇
  2021年   5篇
  2020年   12篇
  2019年   4篇
  2018年   8篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   7篇
  2013年   11篇
  2012年   7篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   9篇
  2007年   8篇
  2006年   12篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
排序方式: 共有135条查询结果,搜索用时 78 毫秒
31.
Mengyao Sun 《代数通讯》2018,46(11):4830-4843
In this paper, we study the regularity and projective dimension of edge ideals. We provide two upper bounds for the regularity of edge ideals of vertex decomposable graphs in terms of the induced matching number and the number of cycles. Also, we generalize one of the upper bounds given by Dao and Schweig for the projective dimension of hypergraphs.  相似文献   
32.
We examine the following version of a classic combinatorial search problem introduced by Rényi: Given a finite set X of n elements we want to identify an unknown subset Y of X, which is known to have exactly d elements, by means of testing, for as few as possible subsets A of X, whether A intersects Y or not. We are primarily concerned with the non-adaptive model, where the family of test sets is specified in advance, in the case where each test set is of size at most some given natural number k. Our main results are nearly tight bounds on the minimum number of tests necessary when d and k are fixed and n is large enough.  相似文献   
33.
34.
35.
36.
Improving a result of Dyer, Frieze and Greenhill [Journal of Combinatorial Theory, Series B, 2015], we determine the q‐colorability threshold in random k‐uniform hypergraphs up to an additive error of , where . The new lower bound on the threshold matches the “condensation phase transition” predicted by statistical physics considerations [Krzakala et al., PNAS 2007].  相似文献   
37.
This paper is motivated by the question of how global and dense restriction sets in results from extremal combinatorics can be replaced by less global and sparser ones. The result we consider here as an example is Turán's theorem, which deals with graphs G = ([n],E) such that no member of the restriction set \begin{align*}\mathcal {R}\end{align*} = \begin{align*}\left( {\begin{array}{*{20}c} {[n]} \\ r \\ \end{array} } \right)\end{align*} induces a copy of Kr. Firstly, we examine what happens when this restriction set is replaced by \begin{align*}\mathcal {R}\end{align*} = {X∈ \begin{align*}\left( {\begin{array}{*{20}c} {[n]} \\ r \\ \end{array} } \right)\end{align*}: X ∩ [m]≠??}. That is, we determine the maximal number of edges in an n ‐vertex such that no Kr hits a given vertex set. Secondly, we consider sparse random restriction sets. An r ‐uniform hypergraph \begin{align*}\mathcal R\end{align*} on vertex set [n] is called Turánnical (respectively ε ‐Turánnical), if for any graph G on [n] with more edges than the Turán number tr(n) (respectively (1 + ε)tr(n) ), no hyperedge of \begin{align*}\mathcal {R}\end{align*} induces a copy of Kr in G. We determine the thresholds for random r ‐uniform hypergraphs to be Turánnical and to be ε ‐Turánnical. Thirdly, we transfer this result to sparse random graphs, using techniques recently developed by Schacht [Extremal results for random discrete structures] to prove the Kohayakawa‐?uczak‐Rödl Conjecture on Turán's theorem in random graphs.© 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   
38.
A characterization of the weak subalgebra lattice of a partial algebra of a fixed type is a natural algebraic problem. In Pióro (2000, 2002) [13] and [15] we have shown that this algebraic problem is equivalent to the following hypergraph question, interesting in itself: When can edges of a hypergraph be directed to form a partial algebra of a fixed type (equivalently, to form a directed hypergraph of a fixed type)? This problem will be solved in the present paper.  相似文献   
39.
This work deals with a generalization of the minimum Target Set Selection (TSS) problem, a key algorithmic question in information diffusion research due to its potential commercial value. Firstly proposed by Kempe et al., the TSS problem is based on a linear threshold diffusion model defined on an input graph with node thresholds, quantifying the hardness to influence each node. The goal is to find the smaller set of items that can influence the whole network according to the diffusion model defined. This study generalizes the TSS problem on networks characterized by many-to-many relationships modeled via hypergraphs. Specifically, we introduce a linear threshold diffusion process on such structures, which evolves as follows. Let H=(V,E) be a hypergraph. At the beginning of the process, the nodes in a given set SV are influenced. Then, at each iteration, (i) the influenced hyperedges set is augmented by all edges having a sufficiently large number of influenced nodes; (ii) consequently, the set of influenced nodes is enlarged by all the nodes having a sufficiently large number of already influenced hyperedges. The process ends when no new nodes can be influenced. Exploiting this diffusion model, we define the minimum Target Set Selection problem on hypergraphs (TSSH). Being the problem NP-hard (as it generalizes the TSS problem), we introduce four heuristics and provide an extensive evaluation on real-world networks.  相似文献   
40.
The paradigm of many choices has influenced significantly the design of efficient data structures and, most notably, hash tables. Cuckoo hashing is a technique that extends this concept. There, we are given a table with n locations, and we assume that each location can hold one item. Each item to be inserted chooses randomly k ≥ 2 locations and has to be placed in any one of them. How much load can cuckoo hashing handle before collisions prevent the successful assignment of the available items to the chosen locations? Practical evaluations and theoretical analysis of this method have shown that one can allocate a number of elements that is a large proportion of the size of the table, being very close to 1 even for small values of k such as 4 or 5. In this paper we show that there is a critical value for this proportion: with high probability, when the amount of available items is below this value, then these can be allocated successfully, but when it exceeds this value, the allocation becomes impossible. We give explicitly for each k ≥ 3 this critical value. This answers an open question posed by Mitzenmacher (ESA '09) and underpins theoretically the experimental results. Our proofs are based on the translation of the question into a hypergraph setting, and the study of the related typical properties of random k ‐uniform hypergraphs.© 2012 Wiley Periodicals, Inc. Random Struct., 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号